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UNIT-1 

KINETIC THEORY OF GASES 

Introduction: According to this theory 
1. All gases are made up of molecules which are considered to be rigid, perfectly elastic 

and identical in all respects. There are 6.02X1023 molecules in one mole. 
2. The molecules are in random motion with all possible speeds in all directions. 
3. The inter molecular forces between the molecules are neglected. 

All collisions are perfectly elastic and there is no loss of kinetic energy. 
4 The distance moved by the molecule between two successive collisions is known as “free path” of the 

molecule. 
5 The average distance traveled by a molecule between two collisions is known as” mean free path”. 

Important formulae: 

Pressure P= 
1 mn 

c2 
3 V 

m=mass of the molecule;n=no.of molecules 

For an ideal gas  PV=nRT V=volume of container 

meanfreepath   
1 

 
2d 2n 


m  

2d 2

c2=mean square speed of the molecules 

 

MAXWELL'S LAW OF DISTRIBUTION OF MOLECULAR SPEEDS: 

According to kinetic theory of gases, a gas consists of a large number of molecules which are frequently 

colliding with other molecules as well as with the walls of the containing vessels. So their speeds and directions are 

changing. However at a given temperature, the root mean square speed of the gas molecules remains unchanged. The 

rms Speed can be calculated by using Maxwell’s law of distribution of molecules. 

According to Maxwell’s law of distribution of molecular speeds, the number of gas 

molecules dnC having their speeds between C and C+dc is given by 
3 

dn = 4n


 m

 
 

 


 

2 

emC2 / 2kTC2 dC` 
C 

 

Where 

 2kT 

n = total number of gas molecules 

m = mass of each gas molecule. 

k = boltz Mann constant 

T = absolute temperature 

Proof: Let us represent the molecules in a velocity diagram with 

“O” as Origin and OX, OY, OZ as the co-ordinate axes as 

shown in the fig.Let a molecule having velocity C represented 

by a vector OP=C. Let the velocity components in X, Y, Z- 

directions be u, v, w respectively. Let all the molecules 

whose velocity components lie in the range u and u+du, v and v+dv, w and w+dw will be contained in the element 

volume du dv dw as shown in the figure. 

The probability that a given molecule has its velocity lying between u and u+du=f (u) du 

The probability that a given molecule has its velocity lying between v and v+dv=f (v) dv 

The probability that a given molecule has its velocity lying between w and w+dw=f (w) dw 

 

The probability that a molecule may have its velocity components lying between u and (u+du) 

v and (v+dv) and w and (w+dw) = f(u) f(v) f(w) du dv dw . 

The resultant velocity of the molecule is a single vector C. The probability that the single 

velocity of value C lies in the element of volume du dv dw can be expressed as  c2 du dv dw 

 f(u) f(v) f(w) du dv dw = c2  du dv dw؞

 f(u) f(v) f(w) = c2  = u2  v2  w2 (1)؞
Where c2=u2+v2+w2  (2) 

To solve eq(1) we assume that for a particular value of c, c2  is constant and hence 

differential of this quantity is equal to zero 

d  c2 = 0 

Differentiating eq (1) we get 

d[f(u) f(v) f(w)] = d  c2 = 0 

f1(u) f(v) f(w)du + f(u)f1(v)f(w)dv + f(u)f(v)f1(w)dw = 0 ---- (3) 
Dividing eq(3) by f(u) f(v) f(w) we have 

f 1 u
du 



f u 

f 1 v
dv



f v 

f 1 w

f w 
dw  0 -------------- (4) 

Differentiating eq (2) we get 





b 

 

b b b 

 
 1 



 

f u f v f w  a3e   (11) 

 

0 = 2udu + 2vdv + 2wdw 

 udu + vdv + wdw = 0  (5)؞

Multiplying eq (5) by  we have 

udu vdv wdw 0 ----------------------------- (6)  =constant 

Adding eq (4) and (6) we get 
 f 1u   f 1v   f 1w 

  
f u 

 udu   
f v 

 vdv   
f w 

 wdw  0 --- (7) 
     

Since u, v, w are independent of each other eq (7) can be satisfied only if each of the term is 

Separately equal to zero 
Now we consider the first term is 

 f 1u 
  




 
f u
f 1 u




udu  0 




Integrating we get 

log 

f u 
du  udu 

 
f u   

u2 

 log a




e 
2 

e 

Where loge a = integration constant 

log 
 f u 

  
u2 

 

 

f u 
a 

e 



 e 


 2 

 
u2 

2 

 

u2 
 

 

f u  ae 2
 

 
 aebu

2   

         (8) 

Similarly for two other terms 

f v  aebv
2   

             (9) 

f w  aebw
2   

           (10) 

From, eqs 8,9,10 we have 

 

 

where 

 
 
 b 

2 

     
b

u 

2 
v2 w2 




The constants a and b can be found by integrating the above equation applying the boundary conditions. 

Let n be number of molecules per c.c of the gas with all possible velocities from  to  
According to the definition of probability 

n  f uf vf wdudvdw n 


  f uf vf wdudvdw 1 

 

  2  2  2 

  a
3e b u     v 



w dudvdw 1                (12) 

We know that the value of definite integral 


 ebu
2 

du 


Eq (12) can be written as 
 

a3 

 

3 
3  2 

 a    1 
 b 

1 

 

 
We know that 

 
 

a  

 

b 
 

2

 

  

a 







m 

3 





b          
2KT 

 

 

 

dn  nf uf vf wdudvdw 

dn  na3ebu2 v2 w2 dudvdw 

Where m = mass of the molecule 

K = boltz Mann constant 

T = absolute temperature 
The number of dn of moles having velocity components 

lying between u and u+du, v and v+dv, w and w+dw is 

given by 

3 
mc2 

dn  n


 m 

 
2 

e 2KT dudvdw           (13) 

 2KT 
The total number of molecules that lie in a speed range C and C+dC is given by 

4 
 C  dC3  

 C3  4C2dC 

The above value is equal to du dv dw 

Eq (13) can be written as 

 

(Neglecting smaller terms) 

3 
mC2 

 
 dn   n


 
   m   


2 

e 2kT   4C2dC 
C  2kT 

3 
mc2 

 
 dn   4n


 
   m   


2 

e 2kT C2dC          (14) 
C  2kT 

The above eq is known as Maxwell’s law of distribution of molecular speeds in a gas 

Eq (14) can be written as 
3 
mc2 

 
 

dnc 
 4 



 m 




2 

e 2kT  C2dC 

n  2kT 

The fraction 
dnc is generally denoted by f and this can be written as 

n 
f = P(C) dC 

3 
mC2 

 
 P(c)dC  4 



   m   


2 

e 2kT  C2dC 

 2kT 
3 

 
 

 

 
mc2 

P(C)  4 


   m

 


2 

e 2kT C2 

 2kT 

Hence P(C) is known as Maxwell’s speed distribution function. 

 

SPEED DISTRIBUTION CURVES: 

(1) Speed distribution curve with constant temperature: 

 

Fig 

The above fig represents the speed distribution function P(C) as a function of C at a particular 

temperature. 

 

The following points are observed: 

(1) The distribution curve at any temperature is asymmetrical about its peak. 

(2) It is observed from the curve that the mean speed of molecules c is slightly higher than Cp is that 

speed for which the curve has its maximum value. 

(2) Speed distribution curves at different temperatures: 

 

The above figure represents the speed distribution function P(C) 

as a function of C at different temperatures. The following important 

points are noted 

(1) The number of molecules in a given speed interval increases upto a 

maximum and then decreases asymmetrically towards zero at any 

temperature. 

(2) At any temperature the number of molecules in a given speed 

interval is obtained by the area under the curve shown by shaded area. 

(3)As the temperature increases, the distribution curve becomes flatten. 

(4) The distribution at any temperature is non-symmetrical about its peak. 



 

(5) The speed at which the number of molecules is a maximum corresponds to the peak value as shown by curve 

is called the most probable speed CP. 

 

EXPERIMENTAL VERIFICATION OF MAXWELL’S SPEED DISTRIBUTION LAW: 

Fig 

LAMMERT’S TOOTHED WHEEL METHOD: 

As shown in the fig two equal toothed wheels W1 and W2 are mounted at a distance x on the same axle. The slits 

in W2 are not parallel to those in W1 but are displaced at an angle of 2o behind them. An oven O contains 

mercury vapour which comes out of a slit S1.The wheels are set in rapid motion .The mercury beam passing 

through   slit S1 falls on the slot in W1.The molecules passing through the slot of W1 now fall on the wheel W2. 

If the molecules having particular speed can be separated from the rest. These molecules are deposited on the 

plate P. By rotating the wheels with various speeds, the molecules of different speeds are collected at different 

places on the plate P. The relative intensities of these collections are measured by micro photometer. From these 

we can calculate the relative numbers of molecules lying in different ranges are calculated. 

A graph is plotted by taking 

 
 

C 
values on X- axis and 

Cp 

intensity of spot formed on P on Y –axis. The graph is shown 

below. 

It is observed that the graph is exactly coincides with the 

theoretical curve for Maxwell’s distribution law of molecular 

speeds. 

 

TRANSPORT PHENOMENA: 

We have applied the kinetic theory of gases when the gas is in 

equilibrium state. But the gas is not in equilibrium state in the 

following three cases. 

(1) The component of velocity may not have same value in all parts of the gas. This will result in relative motion 

of the gas layers with respect to one another. Now the layers moving faster transport momentum to the slower 

moving layers. This gives rise to the phenomenon of viscosity. 

(2) The different parts of the gas may be at different temperatures. Now to bring the equilibrium state, the 

molecules of the gas will transport kinetic energy from regions of higher temperature to lower temperature. This 

gives rise to the phenomenon of conduction. 

(3) The different parts of the gas may have different densities. Now to bring the equilibrium state, the molecules 

of the gas transport mass from regions of higher density to regions of lower density. this gives rise to the 

phenomenon of diffusion . 

Hence the transport of momentum, energy and mass represent viscosity, conduction and diffusion 
respectively. These are called transport phenomenon. 

VISCOSITY OF GASES : 

As shown in the fig. the velocity of the layer in contact with the 
surface OX is zero and it gradually increases as we move up from “O” in Y 
direction at a uniform rate (du/dy). Let u be the velocity of the layer AB. 

There are two layers CD and EF on either side of AB at a distance  [ mean 

free path] whose velocities are 

      
    

          
     

respectively. 

CO-EFFICIENT OF VISCOSITY: 

The tangential force per unit area per unit velocity gradient between the layers of the fluid is known as 

coefficient of viscosity. i.e., 



3 2d 2
 

T T 



 

F   
du

 
dy 

 
 F / 

du
 

dy 
 

EXPRESSION FOR VISCOSITY : 

Let n be the number of molecules per unit volume of the gas and C be their average velocity due to thermal 
 

agitation. According to joule’s law the number crossing unit area per second either way will be 
nC

 
6 

The velocity of gas in layer CD = u   
du

 
dy 

The velocity of gas in layer EF = u   
du

 
dy 

The momentum carried downward by the molecules crossing unit area of AB per second from the plane CD is 

given by 

P1= mass x velocity 
p   

1 
mnC


u   

du


1 
6 




dy 

Similarly, the momentum carried upwards 
p   

1 
mnC


u   

du


1 
6 




dy 

Net momentum transferred per second downwards 
p   p    

1 

   
  

du 
 u   

du




1 2 
6 

mnCu 
dy

 
dy 

 
1 

mnC

2 

du


6 
 dy 

 
1 

mnC 
du 

         (1) 

3 dy 

The co efficient of viscosity is defined as the ratio of the tangential force to the velocity gradient. 
1 

mnC
 du

 

  
3 dy 

du 

dy 

 
1 

mnC  
1 
C

 

where mn =  = density 

3 3 

Substituting the value of  
1 

we get 

2d 2n 
 

 

 
mC 

From he above expression it is observed that 

(1) is independent of pressure or density. 

(2) is directly proportional to the C . 

(3) is directly proportional to .since c

(4) is inversely proportional to square of the diameter of the molecule. 

(5) is directly proportional to the mass of the molecule of the gas . 

THERMAL CONDUCTIVITY: 

The transport of heat energy from one region of the gas which is at higher temperature to the region of 
lower temperature gives rise to the transport phenomenon of thermal conduction. 

EXPRESSION FOR THERMAL CONDUCTION: 

Imagine the gas to be at rest and divided into several layers. Let the layer represented by OX be the coldest and 
the temperature gradually increases in OY direction as shown in the fig. Consider a layer AB at a distance y 

from OX which is at a temperature T. There are two layers CD and EF on either side of AB at a distance 
whose temperatures are 

T   
dT 

And T   
dT

 respectively. 
du dy 



3 2 d 2 

3 2 d 2 

T 

 

 
Fig 

The number of molecules crossing the layer AB in one direction per unit area per second can be written as 
nC 

. 
6 

Where n is the number of molecules. Let m be the mass of the molecules. The total mass crossing unit area of 

AB per second is given by 

 
 

mnC 
 

 

6 
The total heat energy Q1carried by all the molecules in crossing layer AB downwards per unit area of 

AB per second is given by 

Q1 = mass x specific heat x temperature 

 

mnC 
 

 
 

dT 

 6 
Cv T  dy 

   
Similarly, the total heat energy Q2 carried by all the molecules in crossing layer AB upwards per unit 

area per second is given by 

Q   

 mnC  

 dT 
2  6

 Cv T   
dy 




Transfer of energy Q = Q1-Q2 

 
 

Q  
mnC 

  

 dT 

 

dT 

6   
Cv T   

dy 
 T   

dy 


 

Q  
mnC 

C 

2 

dT 



6 
v 

 dy 

Q  
1 

mnCC  
dT 

           (1) 
  

3 
v 
dy 

The coefficient of thermal conductivity of a gas is defined as the quantity of heat that flows per unit area per 

second per unit temperature gradient. 

Q  K 
dT

 
dy 

K   
Q

 
dT 

 

 

dy 

From eq (1) and (2)we have 

                 (2) 

1 
mnCC  

dT
 

K  
3
 

v dy 
dT 

 

 

dy 

K  
1 

mnCC 

3 
v
 

but 
1 

 

2d 2n 

K  
1 

mnCC
  1 

 

3 

K  
1
 

v 

 

mCCv 

2d 2n 

 
 

K  1 mCCv 

From the above eq it is clear that 

(1)K is independent of pressure. 

(2)K is proportional to C i.e., proportional to 

(3)K is inversely proportional to d 2 

(4) 
K 
 C 
 

 
v 

DIFFUSION OF GASES: 



 

Diffusion: 

It is the process by which the mass gets transferred inside a gas from a region of high concentration to a region 

of lower concentration. 

 

COEFFICIENT OF DIFFUSION: 

The number of molecules of the gas crossing per unit surface area per second per unit concentration 

gradient. 

EXPRESSION FOR DIFFUSION COEFFICIENT: 
As shown in the fig let the concentration at plane XY = n 

The concentration at a plane CD which is at a distance  above XY 

 n   
dn

 
dz 

The concentration at a plane AB which is at a distance  below XY 

 n   
dn

 
dz 

The number of molecules crossing plane XY downwards per unit area per 

second will be 

 
1 

C

n   

dn


6    dz 
And then upward will be 

 
1 

C

n   

dn


6   dz 
The net number crossing unit area per second of plane AB in downward direction is given by 

 
1 

C

n   

dn 
 n   

dn


6    dz dz 

 
1 

C

2 

dn



6    dz 

 
1 

C 
dn 

3 dz 
 

 

1 
C 

dn 

D  3 dz 
dn 

 

 

dz 

D  
1 

C 
3 

D  
1 

C 
 
 









  

1 
C

3   3 

D  






From the above expression it is clear that 
3 

 

(1) D is directly proportional to T 2 

 
T

 
P 

c  T 
3 

DT 2 P1 
(2) D is inversely proportional to pressure P. 



 

THERMODYNAMICS 

Introduction: 

It is a branch of thermal physics which deals with the transformation of heat energy into mechanical 

work or vice –versa. It also deals with the transformation of heat energy to electrical, chemical and light energy. 

System: 

A definite quantity of the matter bounded by some closed surface is known as a System. 

Ex: A gas contained in a cylinder. 

Surroundings: 

All those things which are outside the system and influence its behavior are known as Surroundings of 

the System. 

Temperature: 

The intensity of heat is known as Temperature. 

Heat: 

Heat is a form of energy which is transferred from one body to other body due to Temperature 

difference between them. 

Thermal equilibrium: 

When ever there is no heat exchange between the bodies, the bodies are said to be in Thermal 

equilibrium. 

Internal energy of a system: 

The stored energy which is not apparently shown by a system is known as its Internal energy. 

Ex: A mixture of H2 and O2 gas on explosion provides mechanical energy. 

Zeroth law of thermodynamics: 

When two systems A and B are individually in thermal equilibrium with the third system C then the two 

systems A and B are in equilibrium with each other ie they are at the same temperature. 

First law of thermodynamics: 

The amount of heat supplied to a system is equal to the sum of change of internal energy and the work 

done by the system 

i.e., dQ = dU+dW 

 

Difference between isothermal and adiabatic process: 

 

Isothermal process Adiabatic process 

(1)It is a process in which a change in pressure and 
volume takes place keeping the temperature 

constant. 

(1)It is a process in which a change in pressure and 

volume takes place keeping it thermally insulated 
from the surroundings. 

(2)The gas is enclosed in a good metallic cylinder (2)The gas is enclosed in a good non-conducting 
cylinder 

(3)It is a slow process (3)It is a quick process 

(4)The temperature of the gas remains constant. (4)The temperature of the gas does not remains 
constant 

(5)It obeys boyle’s law 
i.e., PV = constant 

(5)It obeys poison’s law 

i.e., PV  constant 

(6)work done W = 2.303RT log
V2

 

V1 

(6)work done W =
 R 
T T 
 1 

2 1 

(7)There is an exchange of heat from system to 
surroundings. 

(7)There is no exchange of heat from system to 
surroundings. 

 
 

 

A cycle of processes: 

When a system is taken from its initial to final state by one or more process and then back to its initial state by 

some other one or more processes, the net change in internal energy is zero. ie dU = 0 

 dQ = dW؞

Reversible process: 

A Reversible process is one which can be reversed in such a way that all changes occurring in the direct process 

are exactly repeated in the opposite order and inverse sense. 

If heat is absorbed in the direct process, the same amount of heat should be given out in reverse process. 

If work is done on the working substance in the direct process, then the same amount of work should be done by 

the working substance in the reverse process. 

Ex: isothermal and adiabatic changes are reversible. 

 

Irreversible process: 

Any process which is not reversible exactly is an Irreversible process. 

Ex: Conduction, radiation, electrical heating of wire. 



 

CARNOT’S ENGINE: 

IN 1824, French engineer Carnot designed an ideal and simple heat engine having the maximum efficiency. It 

consists of the following parts. 

(1) The working substance: 

The working substance is an ideal gas enclosed in a cylinder piston arrangement as shown in the fig. 

 
 

(2) The source of heat: 

A hot body of high thermal capacity maintained at a high temperature T1 K serves as a source. 

There is no change in temperature if we take some heat from the source. 

(3) Sink: 

A cold body maintained at a lower temperature T2 K serves as a sink. If we given some heat 
to the sink there is no change in the temperature . 

(4) Insulating stand: 

A perfectly non-conducting platform to serve as a stand for the cylinder. 

 

Carnot’s cycle: 

The working substance is supposed to undergo the following four operations known as the Carnot’s cycle as 

shown in the fig. 

 
(1) Isothermal expansion: 
Let the initial temperature of the gas in the cylinder be T1 and its state be represented by the point A 

(P1, V1) on the indicator diagram. The cylinder is placed on the source and the piston is moved slowly upwards 

so that the pressure of the gas falls and the volume increases. Hence the fall of temperature is absorbed from the 
source. The final state of the gas is represented by point B. 

Let the quantity of heat absorbed from the source be Q1. This is equal to the amount of work done W1 by 

the gas in the expansion from point A to point B. 
V2 V2  dv

Q1   W1     PdV   RT1 
V 


V1 V1 
 

Q   RT log 


V2  

  areaA BAA  (1) 

1 1 e  V 


  1  
(2) Adiabatic expansion: 

The cylinder is detached from the source and is placed on the insulating stand. The piston is allowed to move 

further adiabatically till the temperature of the gas is same as that of the sink ( T2 K). Hence, the gas does 

external workW2. In the final state the pressure and volume of the gas are P3 and V3 respectively. 



2 


  

 

V3 V3 dV
 

V3 dV 

W2   PdV   K 
V  

 K  V 


V2 V2 V2 

 V  1   
V3 

V 1  
V3 W2    K  1    

 K1 
 V  V 

 KV 1  KV 1   PV  PV 

 K  PV  




W   
3 2 

 






    3   3 2 2  K 

 1 
 

 1

P  




V 

W  
RT2  RT1 P V 

 

 RT andPV  RT )
2 1  2   2 1 3   3 2 

W   
RT1   T2   AreaB  CBB                      (2) 

2 
 1 

(3) Isothermal compression: 

The cylinder is separated from the insulating stand and placed on the sink at T2. Now the gas is 

compressed very slowly till the gas attains the state D where pressure and volume are P4 and V4 respectively. 

Here the developed heat passes to the sink. Let the developed heat be Q2 which is equal to the work done W3 on 

the gas. 

 
v4 v4 dV

 

Q2  W3   PdV  RT2  V
 

v3 v3 

 
 

 
 V4  V3 

 RT2 log
V 
  RT2 log

V
          (3) 

 3  4 

Q2  W3  areaCCDDC 

(4) Adiabatic compression: 

Now the cylinder is separated from the sink and placed on the insulating stand. Now the gas is compressed 

adiabatically till the state A is reached its temperature rises from T2 to T1 . 

 
V1 

  
RT T  


   

The work done W4 on the gas PdV 1 2  area D A AD (4)1 

V4 
1 

From eq(2) and (4) it is clear that W2=W4 

Net work done by the gas W = W1+W2+W3+W4 

= W1-W3 = area ABCD 

= Q1-Q2 

Calculation of the efficiency of the engine: 

It is the ratio of the external work done in one cycle to the corresponding amount of heat taken from the source. 

  
Q1   Q2   1 

Q2
 

  

Q1 Q1 

  1 
Q2                (5) 

Q1 

W  Q   Q   RT log  


V2  


 





 

V3 

          (6) fromeq(1) &(3) 

 
 1 2 1 e  V  RT2 logV 


  1   4 
Points B and C lie on the same adiabatic curve 

TV  1  T V  1 

1 2 

T  V 
2 3 


 1 

    1   3               (7) PV   K 
T2 V2  

RT 
V   K 

V 

 PV  RT 

TV  1  K 
Points A and D lie on the same Adiabatic curve 

TV  1  T V  1 

1 1 

T V 
2 4 


 1 

    1   4               (8) 
T2  V1 

From eq(7)&(8) we get, 

2 

2 



 

 

V 
 1 

V 
 1 

   3 

V2 

    4 

 V1 


V3    

V4
 

  

V2 V1 

 
V3  

V2                (9) 
  

V4 V1 

By substituting the above value in eq(6)we get 


 




W   RT  log  
V2    RT  log  



V2  



1 e  V  2 e  V 

   1 
 

 1 

W  RT  T log 
V

2
 

 

1 2 e 

1 

RT   T  log 
V

2
 

 

W 1 2 e V 
 

Q1 
1  

RT log 
V

2 


1 e  V 
   1 

  
T1  T2 

T1 

  1 
T2

 

T1 

 
 

Impracticability of Carnot’s engine: 

Carnot’s engine is an ideal engine and can’t be realised in actual practice due to following reasons:  

(1)The heat is to be taken and rejected strictly at constant temperature which is practically very difficult to 

achieve. 

(2) The base of cylinder of the engine is assumed to be perfectly conducting and other parts perfectly non- 

conducting. This is not possible in actual practice. 

(3) The engine has very slow working. Therefore it is useless in our daily life. 

(4)It is perfectly reversible in its action .But it is not possible in actual practice 

Carnot’s Theorem 

 
According to this theorem no engine can more efficient than reversible engine working between the same two 

temperatures. 

Proof: 
Let us consider a reversible engine R and irreversible engine I working with the same source and sink. 

Let engine I absorbs an amount of heat Q1 from the source, convert a part of it W into work and transfer 

the balance Q1 W to the sink. 

efficiencyofI I 
 

W 
 (1) 

Q1
Now engine R works as a refrigerator with the work W exerted by the engine I. Hence refrigerator R 

absorb an amount of heat Q1-W from the sink and transfer heat Q1-W+W = Q1 to the source. If it work as a heat 

engine then, R absorb an amount of heat Q1 from the source, but R is reversible engine and hence convert a part 

of it W into work and transfer the balance Q1-W to the sink. 

efficiencyofR R 
 

W 
(2) 

Q1 

Let us assume that the irreversible engine I is more efficient than reversible engine R 

I  R 

W 
 

W 
 Q  Q          (3) 

  

Q1 Q1 

(Q1 W)  Q1 W            (4) 

V 

1 1 



From eq (3) Q1  Q1 is always +ve and 

From Eq (4)  Q1  W Q1 W also +ve. Therefore the amount of heat  Q1   Q1 is absorbed from the sink and 

it is given to the source. 
From the above discussion it is clear that without any external work heat is absorbed from the cold body 

and it is supplied to the hot body. According to second law of thermodynamics it is impossible. Hence our 

assumption is wrong. 

R I 
Second law of thermodynamics: 

 

Kelvin’s statement: 

When the hot engine absorbs more and more heat from the source, the temperature of the source continuously 

falls and after some time becomes as that of surroundings [sink]. Hence the engine stops working .The heat 

engine works only when a source and sink area at higher and lower temperatures respectively. 

Statement: 

It is impossible to derive a continuous supply of work by cooling a body to a temperature lower than that of the 

coldest of its surroundings. 

 

Clasius Statement: 

In refrigerator the transfer of heat takes place from a cold body to a hot body with the aid of an external work. 

No refrigerator can transfer heat from cold body to a hot body without the aid of an external work 

Statement: 

It is impossible to transfer heat from cold body to a hot body without the external work. 

 

Thermodynamic or Kelvin scale of temperature: 

Lord Kelvin in 1848 started with the result that the efficiency of all reversible engine working between the same 

two temperatures is a function of two temperatures only and is independent of the nature of working substance. 

This idea leads to Thermodynamic scale of temperature. 

Let Q1 be the amount of heat absorbed by a reversible engine at temperature T1 and Q2 the quantity of 

heat rejected at temperature T2 on this scale. 

 1 
Q2    f T ,T 



1     2 

1 


Q2   1 f T ,T 



1     2 

1 


Q1  

1 
 FT ,T          (1) 

Q 1 f T ,T  1 2
 

2 1 2 

Where F denotes some new function of T1 and T2. 

Now we consider another reversible engine absorbing heat Q2 at temperature T2 and rejecting heat Q3 at 

temperature T3. Then 
Q2  FT ,T (2) 

 

2 3 

3 

Similarly for a reversible heat engine working between the temperature T1 and T3 we have 
Q1  FT ,T (3) 

 

1 3 

3 

Multiplying eqs (1)and(2) we get 
Q1 x 

Q2  
Q1  FT ,T xFT ,T (4) 

   

Q2 Q3 Q3 
1     2 2 3 

Comparing eqs (3)and (4) we have 

FT1,T3   FT1,T2 XFT2 ,T3 (5) 

It is observed from eq (5) that there is no T2 on left hand side. This is possible if we choose the following 

function. 
FT ,T    

T1               (6) T2 

FT ,T   
T2               (7) T3 

Where  is another function of temperature. 

NowFT ,T  xFT ,T   
T1  .

T2 
1     2 2 3 T  T 

2 3 

FT ,T  xFT ,T   
T1   FT ,T 

1 2 

From eq (1) we get 

T3 

Q 

Q 

Q 

Q 

1 2 

2 3 

2 3 1 3 



Q1    
T1   (8) 

Q2 T2 

Since Q1>Q2, T1   T2  provided T1>T2. Thus T  is a linear function of T. Let T  
We have 

Q1    
T1   

1   (9) 

Q2 T2   2 

The above eq defined as Kelvin scale of temperature. 

 

Definition: 

The ratio of any two temperatures is the same as the ratio of the heats absorbed and rejected by reversible 

Carnot engine operating between these two temperatures. 

 

Absolute zero: 
We know that 

 1 
Q2     1 

 2
 

  

Q1 1 

when 2  0,  1 
 

The temperature at which the reversible engine has efficiency equal to one is known as 

Absolute zero. 

 

Scale of degree: 

In order to fix up the size of the degree, the interval between ice point and steam point is divided into 100 equal 

parts. Let ice point and steam point are represented by o and o 100 respectively. 

Now if is a reversible engine works between Ice and Steam points then 

Q100  
0 100 

  

Q0  0 

Thus the Thermodynamic scale is completely defined. If 2  is –ve then is greater than one. It is 

impossible. Hence a -ve temperature is not possible on Absolute scale. 

Entropy(S): 

In isothermal process the temperature remains constant. In adiabatic process, neither the heat nor the 

temperature remains constant. Clasius showed that there is something which remains constant during adiabatic 

process. This constant property is known as entropy. 

Entropy is a quantity just like pressure or volume. It is impossible to measure the Absolute Entropy. But 

we can measure the change in Entropy as the substance moves from one state to another. 

 

Physical significance of Entropy: 

By the definition 

Change of Entropy = heat energy / temperature 

Change of Entropy x temperature = heat energy----------------- (1) 
mgh = potential energy 

Or mh  P.E ----------------------- (2) 

By comparing eq(1)&(2) Entropy may be thought of as a quantity which bears to heat motion a similar relation 

as mass bears to linear motion. Hence Entropy is also termed as ‘Thermal inertia’. 

Entropy is also a measure of randomness or disorder of molecule of a system,. The increase of Entropy 

implies a transition from a more ordered arrangement of molecules to less ordered arrangement. That is from 
order to dis-order. 

Change in Entropy ds  
dQ
s  

Q
 

T T 
 

Entropy of universe: 

We know that Entropy of a system remains constant in a reversible cyclic processes but increases in all 

irreversible processes. Thus there is no change in the Entropy of universe due to reversible process while the 

Entropy of the universe increases due to irreversible process. As all actual processes are inherently irreversible, 
hence the Entropy of universe increases. 

 

Entropy and disorder: 

We know that solid state is an orderly state as the arrangement of molecules can be specified. When a substance 

is converted from solid form to gaseous form, the dis-order increases. At the same time, we find that in the 

process of change of state the Entropy increases. Thus with dis-order, Entropy increases. The converse of the 

above is also true, i.e., when the substances are converted into water and then into ice the Entropy and dis-order 
of the molecules decreases. 



 

Temperature Entropy diagram:[T-S diagram] 

A graph is drawn by taking Temperature on Y-axis and Entropy on X-axis is known as T-S diagram 

Uses of T-S diagram: 

(1) They are used in meteorology. 

(2) They are used in predicting defects in the performance of engine. 

(3) They are used to check the efficiency of heat engine. 

(4) They are used to obtain the work value of the fuel used. 

 

Efficiency of Carnot engine: 
 

The working substance undergoes the following operations: 

(1) Isothermal expansion at the temperature T1 of the source. 

(2) Adiabatic expansion when the temperature falls from T1 to T2. 

(3) Isothermal compression at temperature T2 of the sink. 

(4) Adiabatic compression that the temperature rises from T2 to T1 

The above operations are shown on T-S diagram. 

 

 
 

 

 
 

 

 
 

 
 

From the fig it is clear that Entropy changes linearly in an Isothermal process while it remains constant 

in adiabatic process. 

During Isothermal expansion AB at constant temperature T1 the Entropy increases from S1 to S2. During 

Adiabatic expansion BC and Adiabatic compression DA the Entropy is constant. During Isothermal 

compression CD at constant temperature T2, the Entropy decreases from S2 to S1. the rectangular area of the 

cycle of T-S diagram gives the available thermal energy for useful work in a 

Reversible process. 

Let S1 and S2 be the entropies at A and B respectively. During Isothermal change AB the increase in 

entropy = S2-S1, Let Q1 be the amount of heat absorbed by the working substance in 

Isothermal expansion and Q2 be the heat rejected in Isothermal compression CD. Then 

Q1 = T1 (S2-S1) 

Q1 = AFxAB 

Q1 = area of ABEF 
And Q2 = T2 (S2-S1) 

= area DCEF 

Available energy per cycle converted into useful work 

= Q1-Q2 

= area ABEF- area DCEF 
= area ABCD 

The efficiency   
Q1  Q2  

ABxAD
 

 

Q1 ABxAF 
 

 
AD 

 
T1 T2 

 

AF T1 

 
T1   

T2   1 
T2

 
   

T1 T1 T1 

Thus the ratio of 
AD 

on T-S diagram gives the efficiency. 
AF 

 

Entropy of a perfect gas: 

Consider a mole of a perfect gas at a pressure P, temperature T and volume V. If dQ be the amount of heat 

given to the gas then the increase in Entropy is given by, 

dS  
dQ 

             (1) 
T 

According to first law of thermodynamics 



dQ  dU  dW 

dQ  CV dT  PdV (2) 

 dU  CV dT 

dW  PdV 

dS  C 
dT 

 
PdV 

        (3) 
  

V  T T 

but P  
RT 

V 

dS  C dT 
 

RT dV 
 C

 
  

dT 
 R 

dV 
        (4) 

  

V  T V   T V  T V 
The change in entropy can be calculated by integrating eq (4) within proper limits Tf 

dT 
Vf 

dV 
 
Tf  

 


V f  




S f    Si   CV    
T
  R  V = CV loge  T  

 Rloge  V 


Ti Vi 

 
  
Tf 







 i 


V f  




 i 

S f  Si  2.303CV log10  T  
 Rlog10  V 

            (5) 
   i    i 

To express the entropy in terms of T and P ,we eliminate Vor dV from eq (3) 

dS  C dT 
 P 

dV 
V  T T 

PV = RT 

PdV+VdP = RdT 

dS  C dT 
 P


 

RdT VdP



dV  
RdT VdP 

V  T  PT  P 

dS  C dT 
 R 

dT 
V 

dP 
V 

 

dS  C 

T T 
dT 

 C  C 

T 

dT 
V 

dP 
V 

 

dS  C 

T 

dT 
 C

 

P V 

 
dT 

 C
 

T T 

dT 
V 

dp 
 PV  RT 

V  
RT

 
V   

T P T V  T T P 

dS  C dT 
V 

dP 
P T T 

dS  C dT 
 

RT dP 
P T P T 

dS  C dT 
 R 

dP 
P T P 

 
 Tf 

dT 

 

 
Pf 

dP 

 
Integrating the above eq we get 

S f   Si   CP 
Ti 

 R 
Pi 

S  S  C log 

 

Tf   Rlog 

 

Pf 


 f i P e  T  
e  p 


 i 

S 

 i 

 
Tf 








 

Pf 


f  Si  2.303CP log10  T  
 Rlog10  P 

       (6) 
   i    i 

To express the entropy in terms of P and V ,we eliminate T from eq (3) 
 

dS  C dT 
 

PdV 
  

V  T T 

dS  C  PdV VdP 
 

PdV 
V  RT  T 

dS  C dV 
 C

 
 

dP 
 

RT dV 
  

PV  RT 
V  V V  P V T PdV VdP  RdT 

dS  C dV 
 C

 dP 
 R 

dV 
 

PdV VdP 
V 

V
 

 
dV 




V  P V 
dP 

   dV 
dT 

R 

dS CV 
V

 CV     
P 

CP CV 
V

 

dS  CV 
dP 

 C 
dV 

P P V 
By integrating the above eq we get 

T P 



e  T 

 
Pf  

dP 
Vf 

dV 

S f  Si  CV  P 
 CP  V

 
Pi Vi 

 Pf 

V f  

S f  Si  2.303CV log10 
P 
 CP log10  V 

i    i   


Change of entropy when ice changes into steam: 

Let us consider m gram of ice at T1 K changes into steam at T2 K. let L1 and L2 be the latent heats of fusion and 

vaporization respectively. 

Change in entropy can be calculated as follows. 

(1) First ice T1 K changes into water at T1 K 

Change in entropy is given by S1 
 

mL1   (1) 

T1 

(2) Secondly water at T1 K changes into water at T2 K 
 

  

T2 dQ 
 

T3 mcdT 




 
T  
          

Change in entropy is given by S2  
T1 T1 

mclog 2  

 T1 
(2) 

(3) Water at T2 K changes into steam at T2 K. 
 

 

Change in entropy is given by S3 
 

mL2 (3) 

T2 

The total change in entropy when it is convertible in to steam is given by 

S  S1  S2  S3 

S  
mL1  mclog 


 

T2 

  

mL2
 T e  T  T 

1   1  2 

S  
mL1  2.303mclog 


 
T2 

   

mL2              (4) T 10 T  T 

1   1  2 

THERMO DYNAMIC POTENTIALS AND MAXWELL’S EQUATIONS 

Thermo dynamic potentials: Thermo dynamical state of a system may be represented  in  terms  of  

certain selected variables like pressure, volume, temperature and entropy. For the complete description of the 

system certain other relations are required. For this purpose we use certain energy terms of variables P,V,T and 
S which are known as thermo dynamical functions. The thermodynamical potentials are (1) Internal energy [U] 

(2) Helmholtz function (F) (3) Enthalpy (H)(4)Gibbs function(G) The above quantities are known as 

Thermodynamic potentials. 

 

According to first law of thermodynamics 

dQ =  dU+dW ------------(1) 

Second law can be written as 

dQ = TdS ---------------- (2) 

From eqs (1) and (2) we have 

Tds =dU+dW 

dU =TdS-PdV -----------(3) (dW=PdV) 

This is the basic eqn. connecting the first and second laws of thermodynamics. 

(1) INTERNAL ENERGY: The energy which it possesses due to its molecular constitution and motion is 
known as internal energy (U) . 

(or) 

The stored energy which is not apparently shown by a system is known as its internal energy. 

(2) Enthalpy(H ):Mathematically Enthalpy can be expressed as 

H=U+PV  (4) 

Differentiating the above equation we get 

dH=dU+PdV+VdP 

=TdS-PdV+PdV+VdP Since dU=TdS-PdV 

dH=TdS+VdP ----------- 5 

(3) Helmholtz function:Mathematically Helmholtz function can be expressed as 

F=U-TS  (6) 

Differentiating the above equation we get 

dF=dU-TdS-SdT 

dF=TdS-PdV-TdS-SdT                     Since  du=Tds-pdv 

dF= -SdT-PdV --------- (7) 

(4) Gibbs function :Gibbs function can be expressed as 

G=H-TS --------- (8) 

Differentiating the above equn. we get 

T 



 

 

dG=dH-TdS-SdT 

=TdS+VdP-TdS-SdT 

dG=VdP-SdT ------- (9) 

Maxwell’s equations: 

(1) 

 
T 



V S 

(2) 

 
T 



 P S 

(3) 

 
S 



 V T 

 

 
P 



 S V 

 

 
V 




 S P 

 

 
P 




 T V 

(4) 

 
S 



P T 

 

 
V 




 T P 

Derivation of relations: According to the definition of first law of thermodynamics 

du=Tds-pdv -------------- (1) 

According to the definition of enthalpy 

dH=TdS+VdP ------------- (2) 

According to the def of Helmholtz function 

dF= -SdT-PdV ------------ (3) 

According to the def of Gibbs function 

dG= -SdT+Vdp ---------- (4) 

If there exists any relation among x,y,z then we can write Z as the function x,y. dz= 

 z 
 
x 
 dx 


 
z 
  dy      (5) 

y 
 y  x 

let 
z 

 M 
x 

and 
z 

 N
 

y 

Then equ (5) can be written as 

dz=Mdx+Ndy ---------------- (6) 

We can derive the following equations from partial derivatives 

 
M 


    z  2Z z 

 
  y 

 
y 
 
x 
  

xy and M= 
x

 
 x  
 N    

 
z 
 

2Z z 
 

  
x 


 
y  y  

 
xy N= 

y
 

 Y  
From above two equations 


 
M 




 Y x 
 

 
N 




 x y 
     (7) 

By comparing eqs (1) and (6) we have 

M-------  T 

x       S 

N ----- -P 

y ------  V 

Substituting the above values in equation (7) we get 


 
T 




V S 

 

 
P 




 S V 

(8) 

This is Maxwell’s first thermodynamic relation 

Comparing equ (2) and (6) we have 

M------ T 

x ------  S 

N ---- V 

y ----- P 

Substituting the above values in equation (7) we get 


 
T 




 P s 

 

 
V 




 S  p 
    (9) 

This is Maxwell’s second thermodynamic relation 

Comparing eqs (3) and (5) we have 

M        -S 

x ------- T 

N         -P 

y ------ V 

Substituting the above values in eq (7) we get 



 

 


 
S 




 V T 

 

 
p 




 T v 

This is Maxwell’s third thermodynamic relation 

Comparing eqs (4) & (5) we get 

M ----- -S 

x----- T 

N ---- V 

y ---- P 

Substituting the above values in equ (7) we get 


 
S 




 P T 

 

 
V 




 T  p 

This is Maxwell’s fourth thermodynamic relation. 

Derivation of Clausius – Clapeyron’s equation using Maxwell’s equation: The CLAUSIUS – 

CLAPEYRON’S latent heat equation relates the change in melting point or boiling point with change in 
pressure .The equation can be derived from Maxwell’s second Thermodynamic relation which is expressed as 

 


 
P 




 T V 

 

 
S 




 V T 

Multiplying both sides by T we get 

T

 
P 




 T V 

 


TS 




 T

 
S 




 V T 

 

 
 

T= constant 

T

 
P 




T V 

 V  T 

 

   
Q 




V T 

 
Q  Ts 

 
 

here 

 
Qrepresents the heat absorbed at 

constant temperature i.e. Qis latent heat. 

Let unit mass of a substance under constant temperature is converted from one state to 
another state absorbing an amount of heat L. Suppose specific volumes in the first and second states be V 1 and 

V2 then V  V2 V1 then 

T 

 
P 




 T V 

 

    
                 L 




V2 V1 T 

T 

   
P 

    
    L  

 T  V2  V1 


P 

   
 

L 





T T V2 V1 
 

This is clausius clapeyron latent heat equation 

Ratio of specific heats: 

Specific heat: 

The amount of heat required to raise the temperature of unit mass of the substance through 10c is known 

as specific heat of the substance. 

In case of gases heat is supplied under 

(1) At constant volume 

(2) At constant pressure 

Hence there are two specific heats in case of gases 

They are 

(1) Specific heat at constant volume Cv and specific heat at constant pressure Cp 

Derivation of ratio of specific heats: 
 cp  

 C 
 v 

The adiabatic elasticity Es= V

 
p 


V s 

          (1) 

The isothermal elasticity ET= V

 
P 



V T 

          (2) 

Dividing eq(1) by eq(2) we get 


 
P 

 
ES  

 V S 

ET 
 
P 




 V T 


 
P T 




 
 T V S 


 
P S 




 S V T 



   
 


T
 



 


 
P 

 

 
T 




 
 T s  V s 


 
P 

 

 
S 




 S t  V T 

Substituting the values of Maxwell’s equ we get 


 
S 


 
 
P 


  S   P 

Es  
 V  p  S v 

 
 V 




 s 
E  T   P   T   P T          

 V  p  T v 
 V  p  T v 

 

 
S 

 

 
T 




 T  p  S v 


 
S 




 
 T  p 


 
S 




 T v 

Multiplying numerator and denominator by T we get 

T

 
S 

 

 
Q 




ES 
  T  p 

 
 T  p 

 
Cp 
 


 

ET T

 
S 




 T v 


   
Q 

 
Cv 

 T v 

 
Cp   

   
ES

 
  

Cv ET 

 

  DIFFERENCE OF TWO SPECIFIC HEATS: 
The molar specific heats at constant pressure and at constant volume are expressed as 

C   

  
Q 




P 
 T 

, CV  

 
Q 




 T V 

CP  CV  

 
Q 




 T P 

 

 
Q 




 T V 

 T

 
S 




T P 

T

 
S 




T V 

CP  CV  T 
 S 

  

 
S 




 T 

 
       (1) 

 P V 
Let entropy be a function of independent variable V and T then 

dS  

 
S 




T V 

dT  

 
S 

 dV 
V T 

differentiating the above equation with respect to T at constant pressure we get 


 
S 



 

 
S 



 

 
S 

 

 
V 




T P T V V T  T P 


 
S 



 

 
S 



 

 
S 

 

 
V 


    (2) 

T P T V T T  T P 

From eqn (1) and (2) we get 

CP  CV  T

 
P 




T V 


 
V 




 T P 

        (3) 

For perfect gas of one mole PV=RT 


   
P 

               
R 

T V V 
and 


  
V 

              
R 

By
 

 T P P 
Substituting the above values in eq (3) we get 

C  C  T

 

R 


 

R 
  

TRR 
 

TRR 
 R

 
P V V  P  PV RT 

CP  CV  R 

For Vander wall’s gas: 


 P 



P 

a  
V  b  RT 

V 2 



a  
  

  RT 

Where a, b are constants 

 V 2 
 V  b 

P 



 2

p  

 

 

Differentiating with respect to T at constant volume 


 
P 




T V 


 R 

V  b 
(4) 

Differentiating with respect to T at constant pressure 

 
2a 

 
V 




V 3 
 T P 

 
 RT 

 
V 




V  b  T P 


   R 

=> 

V  b 

  
V 

         
   RT 

 
2a 


 R 

 T   

V  b2 v3   V  b 

R 



 
V 




 T  p 

 
 

v  b            (4) 
   RT  

 
2a

V  b2 
  

v3 

     

By substituting the above values in eq (3) we get 

R 
C  C  T 

 R V  b 
RTR  

p v 
V  b     RT     2a   2     RT  2a 

V  b2    
v3  

V  b   V  b2   
 

v3 




Dividing 



numerator 

 

and 

 

denomin ator 



by RT 

 
wege 


R  

 2a  v  b2 
 

1  
v3 

 
RT 

 
Since v>>b, we can replace (v-b) by v 

R R 


 

2a 1 
 

Cp  Cv  2a v2 

   2a  R1 

RTv


1 
v3 RT 1 

RTv 

 


C  C  R


1

 2a 
p v 


 RVT 

Neglecting higher powers after expanding the term. 

 

JOULE-KELVIN EFFECT:[POROUS PLUG EXPERIMENT]: 

 
 

When a gas under a constant high pressure is passed through a porous plug to a region of constant low 

pressure then there is a change in it’s temperature . This is called joule-Kelvin effect. 

The following point’s are observed : 

(1) At ordinary temperatures all gases except hydrogen and helium suffer a fall in temperature ,while 

hydrogen and helium suffer a slight rise in temperature . 

(2) The change in temperature is directly proportional to the pressure difference on the two sides of the 

plug. 

(3) If the initial temperature of the gas rises then the cooling effect decreases. At a certain initial 

temperature, known as “inversion temperature”, the cooling effect is changed into heating effect. 

EXPRESSION FOR JOULE – KELVIN COEFFICIENT: 
When a gas suffers Joule-Kelvin effect the total enthalpy of the gas remains constant. 

H =U+PV =CONSTANT 

or   dU+ PdV +VdP =0 -------------- (1) 

We know that  TdS=dU +PdV ---------------- (2) 

By substituting equ(2) in equ (1) we get 

TdS + VdP =0 ---------- (3) 

Let us consider s is a function of P and T then change is entropy 

dS =  

 
s 


 p T 

dp  

 
s 
  dT 

 T P 

By substituting the above value in equ (3) we get 
   S   S  

 T 
P 

  dp  T 
T 

  dt  vdp  o ------------- (4) 
   T  P 



 P 

But T 

 
S 

  

T 
S 


  


 
Q 

  C 

T P  T P  T P 


 
S 




P T 

 

 
V 



 T P 

Maxwell’s fourth equation 

Substituting the above values in eqn. (4) we get 

-T 

 
V 




 T P 

dp  CpdT VdP  0 

C dT  T

 
V 

dPVdp 
P  T 

C dT  

 
 
V 


 V 

 
dp 

P T
 T  



dT 


 1   V  
dP C T 

T 
 V 

or 
 T 

P  


  1  

 P 
 V   

P 



C   
T 

T 
  V (5) 

 H P     P 



Here 


 
T 

 


 P H 

 
which is known as joule Kelvin coefficient 

 

 
 1 

 
 
V 


 V 


(6) 

C   
T
 T  




P   P 

The following important points are observed . 

(1) If 

 
T 




 P H 

is positive then there is a cooling effect. 

(2) If 

 
T 



 P H 

is negative then there is a heating effect. 

(3) If 

 
T 

  0 

 P H 

then there is neither cooling nor heating. 

The corresponding temperature is known as inversion temperature. 

Joule-Kelvin effect for a perfect gas : 
For a perfect gas PV=RT 

V=RT/P 


   
V 

               
R 

 T P P 
Substituting the above value in equation (5) we get 

 T 


  1     R    1  TR 
 
P 

 
C 

T 
P 
 V   

C  P 
V   0 

 H P        P  

Hence joule-Kelvin effect for a perfect gas is zero. 

Joule-Kelvin effect for vanderwall’s gas: 
For vanderwall’s gas 

 P 



a  
V  b  RT 

V 2 



Differentiating the above equation with respect to T and taking P constant then we get. 


 
V 




 T P 
 

  RV  b

RT  

2a 



(neglecting b2 and 2Vb in comparison with V2) 

 
Now T 


 
V 



 T P 

 V 

  
RTV  b

   RT  

2a 


T 

 
V 




 T P 

 v 

V 
 2a 

 b 
RT 

(neglecting
 2ab 

) 
VRT 

Substituting the above values in equ (5) we get 

 
T 

     
  1   2a 

 b



 p H

 CP  
 RT 

P 



Where
 2a 

 b 
RT 

 
then 

T 
 0 the corresponding temperature is known as inversion temperature Ti. 

P 

T   
2a 

i bR 
If the initial temperature of the gas T is less than Ti then the gas suffers cooling and if 

The initial temperature of the gas is greater than Ti then it suffers heating. 
 

 LOW TEMPERATURE PHYSICS 
INTRODUCTION: 

Scientists have achieved the lowest temperature -2730C or 0K. This is known as the absolute zero of 

temperature. Low temperatures can be achieved by the following methods. 

(1) FREEZING MIXTURES: 

When common salt is mixed with ice, some of the ice melts in cooling the salt to 0oC .The salt readily dissolves 

in the water formed from the melting ice . Heat is absorbed while salt is dissolving in water and further ice will 

melt absorbing latent heat of fusion of ice. Hence it gives -22oC. 

(2) EVAPORATION OF LIQUIDS: 

When a liquid evaporates it draw the latent heat of evaporation from the surroundings. 

By reducing the pressure on the liquid surface the liquid can be made to boil at the room temperature. The latent 

heat necessary for boiling is taken from the liquid itself and consequently the temperature of the liquid falls. 

Ex: boiling NH3 gives -33.4oC 

(3) Still lower temperatures were obtained by the liquefaction of permanent gases. Liquid 

H2 gives -253oC 

(4) 1oK is obtained by adiabatic de magnetization of paramagnetic salts. 

JOULE -KELVIN EFFECT: 

When a gas under constant pressure is passed through porous plug to a region of lower constant 

pressure, the gas suffers a change in temperature. This effect is known as joule Thomson effect. 

 

POROUS PLUG EXPERIMENT: 

Description: As shown in the fig. PQ is thermally insulated cylinder containing porous plug G (silk or cotton 

wool placed between two perforated brass plates). PQ is devided in to two parts using two nonconducting 

pistons A and B. 

Let the gas is compressed to a high pressure P1on oneside.The gas then 

passes through the porous plug on the other side which is at constant low 

pressure P2.Then there is a change in temperature called as Joule-Kelvin 

effect. 

The following important points are observed: 

(1) At sufficiently low temperatures all gases show a cooling effect. But 

at ordinary temperature hydrogen, helium show heating effect. 

(2) The fall in temperature is proportional to the difference of pressure on the two sides of the plug. 

(3) If the initial temperature raises then the cooling effect decreases, at particular temperature called Inversion 

temperature the effect is zero. It differs from one gas to another gas. 

(4) Any gas below its temperature of inversion will cool in passing through the plug. 

Explanation: 

At the temperature of inversion the cooling is due to intermolecular attraction is just balanced by the 

heating due to the external work done on the gas. Above the temperature of inversion the heating due to the 

external work done on the gas will be greater than the cooling due to the inter molecular attraction. Hence 

heating is produced. Below the temperature of inversion the cooling due to intermolecular attraction and cooling 

due to external work done by the gas is produced. 

Inversion temperature of H2 is -51oC and for He is -239oC which is low temperature than normal 

temperature. Hence it will show heating effect in Joule Kelvin expansion. 

 

DIFFERENCES BETWEEN JOULE-KELVIN EXPANSION AND ADIABATIC EXPANSION: 
 

JOULE KELVIN EXPANSION ADIABATIC EXPANSION 

(1)The cooling is mainly due to internal 
work done by the gas against inter 

molecular forces of attraction. 

(1) The cooling of gas is mainly due to the 
external work done by the gas. 

(2) For perfect gas there is no cooling. (2)For any gas we can observe cooling 
effect 

(3) For a real gas there is cooling effect, 
when its initial temperature is below its 

temperature of inversion. 

(3) There is no such heating effect. 

(4)There will be heating effect if the gas is 

initially above its inversion temperature. 

(4)There is always cooling effect. 

(5)It is always irreversible. (5)It is reversible. 



1 

V 

V 

 

EXPRESSION FOR JOULE-THOMSON COOLING: 

Consider a thermally insulated cylinder PQ divided into two 

compartments by a porous plug G. let V1and V2 be the volumes of gas 

before and after passing through the porous plug respectively. 
 

External work done on the gas by the piston A = P1V1 

External work done by the gas on the piston B= P2V2 

Net external work done by the gas = P2V2-P1V1 

If we assume the gas to obey vanderwall’s equation, the attraction between the molecules is 

equivalent to an internal pressure 

 

a 
 where ‘a’ is a constant and ‘v’ is the volume occupied by the gas. 

V 
2 


Hence the internal work done against these forces when 1 g. mole expands from volume V1 to volume V2 is V2  

 a  a a 
  v2 dV  

V 
 

V
 

V   1 2 

The total work done W = P2V2-P1V1 + 
a 
 

a 
        (1) 

V1 V2 


 P 


a 
V b RT 

V 2 



According to vanderwall’s equation, we have 

PV  
a
 

V 
 Pb

 ab


V 2 

 RT 
As a, b are small quantities, 

ab 
can be neglected. 

v2 

a 
PV 

V 
 Pb  RT

PV  RT  
a 
 Pb 

V 

Now PV  RT  
a 
 Pb 

 

1   1 1 

1 

PV  RT  
a 
 P b 

 

2   2 2 

2 

PV  PV  


 1 


 1 
  bP  P          (2) 

 
2   2 1 1 

aV V   
1 2 

Substituting eq (2) in eq (1) we get 

  1 2 

W  


 1 


 1 
  bP  P  

a 
 

a
 

aV V  1 2 
V V

 
  1 2  1 2 

W  

 
a 
 

a 
  bP  P            (3) 

2V V  
1 2 

  1 2 

Since 
a 

and 
a 

V1 V2 

are small quantities we can use the approximate relation 

PV=RT 

i.e 
a  
 

P1a 
and 

a
 

  
P2a 

 

V1 RT 
Now eq (3) becomes 

V2 RT 

W  2

 

P1a 
 

P2 a 
  bP  P 

 

 RT RT  
1 2 

W 
 2a 
P  P  bP  P 

RT 
1 2 1 2 

W  P  P 
 2a 

 b



1 2  
 RT 




As the system is thermally insulated, this work is drawn from the internal energy of the gas. Hence the gas 

cools. 

If Cp be the specific heat at constant pressure then the amount of heat that must be supplied to restore 

the original temperature will be –Cp dT J ergs. 

Where –dT = fall in temperature. Hence 
 C dTJ  P  P  2a 

 b



p 1 2   
 RT 




dT   
P1   P2   2a  

 b
 
         (5) 

C p J 
 RT 







From the above eqs the following important points are noted. 

(1) At any temperature cooling is directly proportional to pressure difference. 

(2) For a given pressure difference (P1-P2) cooling is greater for lower initial temperature. 

(3) If 
2a 

 b is +ve ,then dT will be –ve therefore gas will be cooled . 
RT 

(4) If 
2a 

 b is –ve , then dT will be +ve . Therefore gas will be heated. 
RT 

(5) If 
2a 

 b becomes zero i.e T  
2a

 
  

then dT = 0.In this case the temperature of the gas remains unchanged. 
RT Rb 

This particular temperature Ti is known as temperature of inversion. 

T   
2a 

i Rb 
Clearly every gas above its temperature of inversion would show a heating effect while below its temperature of 

inversion will show cooling effect. 

The temperatures of inversion of hydrogen and helium are as low as -80oC and -240oC respectively. 

Hence they show heating effect at ordinary temperatures. 

LIQUEFACTION OF HELIUM : [KAPITZA’S METHOD] 

 

 
 

 

 
 

 

 

 
 

 

 

 
The experimental set up is as shown in the fig. pure and dry helium is compressed to 30 atmospheres by 

compressor P. Heat of compression is removed by flowing water in a jacket surrounding a portion of the tube. 

The gas is then pre-cooled by passing it through a bath of liquid nitrogen boiling under reduced pressure. The 

pre-cooled gas is divided into two parts at A in the heat exchanger. One part passes to the expansion engine E. 

Due to adiabatic expansion of the gas it cools to -263oC. This cooled gas rises up in the heat exchanger and 

cools the second part coming towards the nozzle N. The second part is now so cooled that after the expansion at 

nozzle N, it is liquefied. The liquefied portion is collected in Dewar flask and the remaining part goes back to 

the compressor through the heat exchanger. 

ADIABATIC DE-MAGNETISATION: 

In 1926 Debye and Giauque reached the lowest temperature by adiabatic de magnetization. 

PRINCIPLE: 

When a paramagnetic substance already magnetised is suddenly demagnetised adiabatically then a 

slight fall in temperature of the substance , due to work is done by the substance. This is known as adiabatic de- 

magnetisation. 

METHOD: 

The experimental arrangement is as shown in fig. 

The paramagnetic substance like Gadolinium sulphate is 

suspended in a vessel A which is connected to a vacuum 

pump. The vessel A is surrounded by liquid helium at 1K 

placed in a Dewar flask C containing liquid hydrogen .A 

strong magnetic field is applied to magnetise the paramagnetic 

material. The coils M round A are used to measure the 

temperature by susceptibility measurements. 

First of all A is filled with helium gas so that the 

paramagnetic substance P comes in thermal contact of liquid 

helium and cooled to 1K. Now the magnetising field is 

switched on. The paramagnetic substance becomes warmed 

but the heat flows through the helium gas into the liquid 

helium. The temperature of the substance again falls to 

1K.Now helium gas is pumped out from the vessel A so that the paramagnetic substance becomes thermally 



i 

kB 

 

insulated. Then the magnetic field is switched off. Due to adiabatic de magnetisation the temperature of the 

substance falls. The fall in temperature is detected by susceptibility measuring coils. In this way they reached a 

temperature of 0.25K 
THEORY: 

According to curie law, the paramagnetic susceptibility  is inversely proportional to the absolute 

temperature T 

  
1

 
T 

  
C 
           (1) 

T 

 

Where c = curie constant 

We know that   
I 
           (2) 

B 
From eq (1) and eq (2) where I = intensity of magnetization 

C 
 

I 
  

B = intensity of magnetizing field 
T B 

 

I  
CB 

       (3) 
T 

 

We know that the fall in temperature 

T  
 T  

 
I 

 B       (4) 

mCB  T B 

T 
 T

     
 

CB
B

 
mC   T   T 



B   
Let Ti and Tf be the initial and final temperatures of the substance corresponding to the initial and final 

magnetic flux densities Bi and Bf respectively. 
T 

Bf 
   CB

 Tf  Ti  
mC

 
 

 B 

On simplifying we get 
B B  T  T 

T T 
C  2   2 
2mCB 

T  B  f B  i 
2 

Tf    Ti  i 
 

2CBT 
Where k = (C/m) called as curie constant per unit mass .When magnetic field is switched off then Bf = 0 

    
—             

The –ve sign indicates a fall in temperature. Using above eq. we can calculate the fall in temperature of the 

paramagnetic substance. 

APPLICATION OF LOW TEMPERATURES: 

(1) Liquid air, liquid oxygen etc.., are used in calorimeters. 

(2) Liquid oxygen is used for respiration and also in the manufacture of explosives. 

(3) Liquid ammonia, liquid sulphurdioxide, Freon are used in refrigerators and air conditioners. 

(4)Using liquefied gases we can obtain vacuum of higher order. 

(5) The properties of super fluidity and super conductivity of matter can be used for the advantage in electrical 

conduction. 

(6) Low temperature physics is used in cryogenic engineering. 

(7)It is used to preserve animal life and vegetable matter. 

 
 

 Quantum theory of radiation 
 

Introduction: 

The transfer of heat by conduction and convection requires the presence of a material medium. But the transfer 

of heat without material medium is known as radiation. For example we receive heat from the sun without 

material medium. The radiant energy is transported by electromagnetic waves because these waves can travel 

through vacuum. 

The radiation emitted by the body by virtue of its temperature is known as thermal radiation. 

Prevost’s law: 

Every body emits and absorbs radiant energy continuously as long as its temperature is above O0K. 

Emissive power: 

The emissive power of a body at a given temperature and for a given wavelength is defined as the radiant 

energy emitted per second by unit surface area of the body per unit wavelength range. 

f i 



 

Absorptive power: 

The absorptive power of a body, at a given temperature and for a given wavelength is defined as the ratio of the 

radiant energy absorbed per second by unit surface area of the body to the total energy falling per second on the 

same area. 

Black body: 

Black body is that which absorbs all the incident radiation and doesn’t reflect the ray’s incident on it. The 

absorbing and emissive power is about 100%but the reflecting power is almost zero. Hence it appears dark 

when it is cold and bright when it is hot. 

There is no perfect black body in nature. The nearest approach is lamp black or platinum black. A 

perfectly black body is a good absorber as well as good radiator. So if it is heated to a suitable high temperature, 

it emits radiation of all wavelength’s which is known as black body radiation. 

 

Ferry,s black body:As shown in the fig. it contains double walled 

conducting sphere.To prevent conduction and convection losses the 

interspace between the walls is evacuated. 

It has a small hole ‘O’ and a conical projection ‘P’. Inner surface is coated 

with lamp-black outter surface is polished with nickel. 

When the radiation is incident on the hole, it passes inside the 

enclosure. The radiation suffers multiple reflections inside enclosure and is 

compleetely absorbed.Conical projection ‘P’ prevents reflection of radiation. 

ENERGY DISTRIBUTION IN BLACK BODY RADIATION 

IN 1899 lummer and pring sheim determined experimentally the distribution of 

energy in black body radiation for different wave lengths and at various temperatures .The experimental 

arrangement is as shown in the fig.1.They used the black body as electrically heated chamber with a narrow slit 

whose temperature was recorded by a thermo couple. 

 

 
The radiations from the black body pass through the slit S1 and fall on the reflector M1. After reflection the 

parallel beam of radiation fall on a fluorescent prism ABC placed on the turn table of the spectrometer. The 

emergent light is focused by the reflector M2 on a line bolometer placed behind the slit S2 . The bolometer is 

connected to a sensitive galvanometer. The turn table is rotated slowly so that different parts of the radiation 

spectrum successively fall on the bolometer circuit are read. The sensitivity of each line is proportional to the 
deflection of the galvanometer. Then a curve is drawn between intensity and wavelength. 

Then the body is heated to different temperatures and drawn for various temperatures. The curves are 

shown below. 

 

The experimental results are shown below 

(1) At a given temperature the energy is not uniformly distributed in the radiation spectrum of a black body. 

(2) The intensity of radiation increases with increase of wavelength and becomes maximum at a particular 

wavelength. After that the intensity decreases. 

(3) An  increase in temperature causes a decrease in m .[ mT   0.02896cmK  constant ] 

(4) An increase in temperature causes an increase in energy emission for all wavelengths. 
(5) The area under each curve represents the total energy emitted by the body at a particular temperature for 

the range of wavelengths .this area increases with increase of temperature. It is found that 

is Steffen’s law 
Wein’s law: 

ET 4 which 

The product of the wavelength corresponding to maximum energy 

constant i.e. 

mT  constant 

 0.2896cmK  0.2896x102 mk 
Wein’s displacement law: 

m and the absolute temperature T is 

The maximum energy emitted by a black body is proportional to the fifth power of its absolute temperature. 

i.e., E   T 5or 
E max 

 constant 
   m ax T 5 



 

Rayleigh –Jean’s law: 
According to Rayleigh-jean’s law, the energy distribution in the thermal spectrum is given by 

E 
 8kT Where K=boltz Mann constant 

 4 

Quantum theory of radiation: 

In 1900, Max Planck proposed quantum theory of radiation 

 

Planck’s hypothesis: 

(1) A black body radiator contains simple harmonic oscillators of possible frequencies 
(2) The oscillators cannot emit or absorb energy continuously. This is contrary to E.M theory. 

(3)Emission or absorption of energy takes place in discrete amounts of energy which is equal to nh 
Where n=0, 1, 2 

i.e., E= nh
The small unit of energy h
Derivation of Planck’s law: 

where h= Planck’s constant 

is known as quantum or photon 

Let N be the total number of Planck’s oscillators and E be this total energy. Then the average energy per 

Planck’s oscillator E is given by 

E  
E 
                   (1) 

N 
Let there be N0, N1, N2……….Nr …etc Oscillators having energy 0, E,2E, 3E………..rE……….. 

N=No+N1+N2+……..+Nr+ ------------------ (2) 

And E= 0+EN1+2EN2+3EN3+……..rENr+ ----------------------- (3) 

According to Maxwell’s distribution formula 
 

rE 

Nr= Noe kT (4) 

Where K= boltz Mann constant 

Substituting the values of N1, N2, N3 from eq (4) in eq (2) we get 
E 2E re 

N  No  N0 e Kt  Noe kT    Noe kT         

 E 2E rE 

 No 1 e kT  e kT
 


  e kT

 ........          (5) 


N0 
 

E 

1 e kT
 

              … 

Substituting the values of N1, N2, N3 from eq (4) in eq (3) we get 
E 2E rE 

E  N0 X 0 EN0e
kT   2EN0e kT    ........  rEN0e kT    .......... 

 
 

E E r1E 

 N0EekT [1 2ekT ............  re kT
 

 

E 
 


      

   
  

 N EekT 1  
        (6)1 2x  3x2    rxr1 

     1 
 

0 
 E 

2  1 x2 

 1 ekT  


 

    
            

          
 

 
 

 

 


               

  
  

      

         

….(7) 
 

We know that number of oscillations per unit volume in frequency range  and 

 d Is given by 

f  
8 2 

dv          (8) 
c3 

Multiplying eq (8) with eq ( 7) we get the total energy per unit volume belonging to the range d





d


1 



E d  
8 2 

d
 h  

 
c3 h

eKT 1 

E d  
8h3

 
d 

        (9) 
 

c3 h

eKT 1 

This is called Planck’s radiation law 

The energy density E d belongs to the range d  can be obtained by using the relation  
c
 


8h c3 

1 


 c  c 

 E  d  
3
 

3  hc 


  2   d  2 d 

c        
eKT 1

8hc 

1 




E d  
5  hc 

d          (10) 
  

eKT  1
This is Planck’s radiation law in terms of wavelength. 

Deduction of wein’s law from Planck’s law: 

For shorter wavelength  is very small 

hc 

eKT 1 

According to Planck’s law 

E  d  
8hc 1 

d
 

 5 

 
For shorter wavelength 

  hc 

eKT 1 

 

E d  
8hc 1 

d






E d 

5 

8hc 
 

5 

  hc 

eKT 

 hc 

eKT d

Putting 8hc  A, 
hc 

 B then we have 
K 

A  
 B 


 B 

 
 

  c 

E d  
5 

eT d  A eT d5 Wein’s law = E  C  5e 2
 

This is wein’s law which agrees with the experimental values with shorter wave length 

Deduction of Rayleigh-jeans law from Planck’s law: 

 
For longer wavelength 

hc 
 

 

KT 

 
is very mall 

  hc hc h2c2 
eKT 1 


  

2 2 2  
 

KT  K T 

 

 1
hc 

 

 

KT 

 

Neglecting higher powers 

E  d  
8hc d  

 5 

1
 hc 

1 
KT 

 
8hcKT 

d
 

5hc 
E d  

8KT 
d 

 4 

 
 

This is Rayleigh-jeans law which agrees with experimental values at longer wave length. 



 

Pyrometer: 

It is an instrument which is used for measurements of high temperatures. The gas thermometers, thermoelectric 

thermometers and resistance thermometers are used to measure high temperatures. These thermometers have to 

be put in contact with the hot body. These thermometers become useless for the measurement of high 
temperatures. In the case of radiation pyrometers, they need not be put in contact with the hot body. 

Advantages: 

(1) They can be used to measure very high temperatures. 

(2) They need not be put in contact with the hot body 

(3) There is no difficulty in extra polation because radiation laws are valid at all 

temperatures. 

Disadvantages: 

(1) Their range roughly begins at 6000c and so temperatures below this limit can’t be 

measured 

(2) The temperatures obtained by these pyrometers are always less than the actual temperature of the source, 

because there is no perfect black body in nature. 

Types of pyrometers: 

(1) Total radiation pyrometers: 
The instruments that measure total radiation emitted by the body under test are called as total radiation 

pyrometers. The temperature is determined by making the use of stefen’s law. 

(2) Optical pyrometer: The Optical pyrometers compare the intensity of radiation of a certain wavelength 

emitted by the body with that of the radiation of same wavelength emitted by a standard body at a known 

temperature. The temperature of the body is obtained by applying wein’s displacement law (or) Planck’s law. 

Dis appearing filament optical pyrometer: 

Construction: 

This device was invented by Morse. Further it was improved by 

Holborn and Kurlbaum. 

This type of pyrometer consists of a telescope fitted with an 

objective O at one end and eye-piece E at the other end. The 
distance between objective and eye-piece can be adjusted rack 

and pinion arrangement. The cross wire of the telescope are 

replaced by an electric lamp S. The filament Fof the lamp is 

connected to a battery B, Rheostat Rh and ammeter A in series. 

The filament is heated by the electric current flowing through it 

and its temperature can be changed by adjusting the current in the circuit. The current is recorded by the 

ammeter D1 and D2 are the two diaphragms which limit the cone of radiation entering the telescope. A red glass 

fitter G is placed before eye-piece E. 

 

Working: 
The objective of the pyrometer is directed towards the hot body whose temperature is to be measured. With the 

help of rack and pinion arrangement, the position of the objective is so adjusted that the image of hot body is 

focused on the filament F. The image is viewed with the help of eye-piece E. The image of the filament 

superimposed with the illuminated red background. The current is so adjusted that the filament become 

disappears against the background. The current (I) in the ammeter is recorded. 

The temperature of the filament T can be calculated from the formula 

I= a+bT+cT2 

Where a, b, and c, are constants. 

Using various bodies whose temperatures are known accurately, the corresponding ammeter readings  

are recorded when filament disappears. Using the above equation and solving it for three readings we can 
calculate the constants a, b, and c. 

The instrument is suitable for measuring temperatures from 6000c to 27000c. 

Merits: 

(1) It is more accurate than total radiation pyrometer. 

(2) It is easily portable. 

De-merits: 

(1) It cannot be used to measure the continuous variation of temperature of a hot body. 
(2) It needs some little settings. 

Solar-constant: 

Sun is radiating energy in all directions by virtue of its temperature. The earth receives only a fraction of this 
energy. The amount of solar radiation received by he surface of the earth depends on the location, the time of 

the day, the time of the year, the weather and the tilt of the surface to sun’s rays. 

Definition: The rate which solar energy received by a black surface per unit area placed normal to the sun rays 

at the mean distance of the earth from the sun in the absence of earth’s atmosphere. It’s value is 1340Wm-2 

Angstroms pyrheliometer : [determination of solar constant] 



0 

 

Construction: 

As shown in the fig Angstroms pyrheliometer consists of 

two thin exactly similar blackened stripes of platinum or 

constantan S1 and S2. The two stripes are 

 

arranged such that one is open to receive radiation from 

the sun normally .While the other is protected by a 

doubled walled shield H. The backs of S1 and S2 are 

connected to two junctions of a thermocouple consisting 

of copper and constantan wire through galvanometer G. 

The strip S2 is heated electrically with the help of electric 

circuit . 

Working: 

When both S1 and S2 are at the same 
temperatures then there is no deflection in the galvanometer. When S1 exposed to radiation from the sun 

its temperature rises and galvanometer shows some deflection. Now current is passed through strip S2 

and its strength is so adjusted that the galvanometer shows no deflection. Now the temperatures of S 1 

and S2 are the same. The heat energy supplied to strip S2 can be calculated from the known values of the 

current and voltage in the circuit. If ‘A’ be the area of cross section of the strip and ‘a’its absorption co- 

efficient, then energy absorbed per minute per square centimeter is      
      
Cal cm-1 mm-1 

 

Solar constant S=     
      
Cal cm-1 mm-1 

The experiment was performed several times on the same day under constant sky conditions with 

different evolutions of the sun. The average value of solar constant was then calculated by performing the 
experiment throughout the year. 

The observed value of solar constant S and the true value of solar constant S0 are connected by the 

relation 

S  S  secz 

Where  is the transmission co-efficient of the atmosphere and Z is the 
Zenith distance of the sun [angular altitude].by taking logarithms we have 

logS logS0 secz log


A graph is drawn between log S and sec z. The graph is a straight line and 

the intercept of the straight line on y-axis gives the value of logS0 . From this 

the value of S0 can be calculated. The value of S0=1340wm-2 

Determination of temperature of the Sun: Let R be the radius of the photosphere of the sun .Then its surface 

area is    .If  T be the absolute temperature of the sun, according to Stefan’s law   the amount of energy     

emitted by the Sun is given by 
 

Where = Stefan’s constant. 

Let us concider a sphere of radius r concentric with the Sun.the radiated energy will be spread over the surface 

       If S is the Solar constant ,  the energy received by the surface            per min is ..............Hence 

               = . 
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1. Calculate the change in entropy when 1kg of water at 00C is mixed with 1kg of water at1000C. 

A) Let Tbe the common temperature of the mixture. 

Heat lost by the hot water= Heat gained by the cold water 

1000 x 1 x (100-T) = 1000 x 1 x (T-0) 

Therefore T= 500C 

Increase in entropy of cold water S1 = ms 2.303 log(T2/T1) 

= 1000 x 1 x 2.303 log(273+50/273+0) 

= 1000 x 1 x 2.303 log(323/273) 

= 1000 x 1 x 0.0731 = 168.4 cal/K 

Decrease in entropy of hot water S2 = ms 2.303 log(T2/T1) 

= 1000 x 1 x 2.303 log(273+100/273+50) 

= 1000 x 1 x 2.303 log(373/323) 

= 1000 x 1 x 0.0614 = 141.5 cal/K 

Increase in entropy = S1 –S2=168.4 - 141.5 =26.9 cal/K 

2. Carnot engine has an efficiency of 30%, when the temperature of the sink is 270C. What must be 

the change in temperature of the source so as to make the efficiency 50%. 

A)Given T2=27+273= 300K 

η1= 30%= 0.3 

T1=? 

We know that          
  

 

   

          
 

    =
    

        η2= 50%= 0.5 

T2=27+273= 300K 

T 1= ? 

           
    
      

   
 

 

                     
  

    =           
 

                    

                

 
3. Calculate the efficiency of a reversible engine that operate betweenthe temperatures 2000C and 1200C. 

A) Given T2=120+273= 393K 

T1=200+273=473K 

η1= ? 

We know that          
     
                 

    

 

4. The efficiency of a Carnot engine is 25%. On reducing the temperature of the sink by 50 K, the efficiency is 50%. 

What are the initial temperatures of source & sink. 

A) Given η= 25% 

            
  

 

   
 
 

When T'2 = T2-50 η= 50%=0.5 

  
 

 
 

 

                      

                    

                    

0.25 =50 

 
 

                       

  



 

5. The rms speed of Hydrogen molecule is 1.84 km/sec .what will be the rms speed of Oxygen molecule at the same 

temperature. 

A) Given                       

       =?  
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